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The effect of two-photon absorption on the amplification of ultrashort optical pulses is studied
theoretically by solving a generalized nonlinear Schrédinger equation. An input pulse can be simultane-
ously amplified and compressed, although the compression factor is smaller in the presence of two-
photon absorption. The amplified pulse evolves toward a chirped soliton that is the solitary-wave solu-
tion of the underlying propagation equation. It can split into several chirped solitons whose number,
width, and peak power depend on the amplifier parameters.

PACS number(s): 42.81.Dp, 42.50.Rh, 42.65.Re

The amplification of ultrashort optical pulses in fiber
amplifiers has attracted considerable attention[1-9] in
view of its potential applications in fields such as optical
communications and photonic switching. In a recent pa-
per [8] the amplification process was modeled through a
Ginzburg-Landau equation that included both gain
dispersion and gain saturation. However, the effect of
two-photon absorption (TPA) on the amplification pro-
cess was neglected because its effects are expected to be
small for the case of commonly used erbium-doped silica
fibers. TPA is known to play an important role in all-
optical switching [10-12]. It is also known to affect the
soliton dynamics and can lead to the breakup of higher-
order solitons in undoped optical fibers [13]. The TPA
effects are likely to become important for new types of
fibers made with semiconductor-doped glasses or lead-
silicate glasses [14,15] exhibiting relatively high non-
linearities. It is therefore important to consider how
TPA affects the performance of doped fiber amplifiers. In
this Brief Report we extend the results of Ref. [8] to in-
clude the effect of TPA on the amplification of ultrashort
optical pulses.

If the coherent effects [7] are neglected by assuming
that the pulse width is much larger than the dipole relax-
ation time 7, of the dopants, pulse amplification is
governed by a generalized nonlinear Schriodinger equa-
tion (or a Ginzburg-Landau equation) [8]
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where f, is the group-velocity-dispersion (GVD)
coefficient [16], ¥ =2mn, /A is related to the nonlinear-
index parameter n,, and g is the small-signal gain at the
operating wavelength A. This equation is similar to the
Ginzburg-Landau equation used in Ref. [8], except that
the effect of TPA has been included through the last term
in Eq. (1) where a, is the TPA coefficient. Gain satura-
tion during amplification of a single pulse can be neglect-
ed in most fiber amplifiers since the saturation energy is
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typically much larger than the pulse energy. It is useful
to write Eq. (1) in a normalized form,
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Here T, is the input pulse width, L, is the corresponding
dispersion length, and s =sgn(f3,)=+1 or —1 depending
on whether 3, is positive or negative. TPA is governed
by the parameter pu, that can be written as
u,=Aa,/2mn,. For silica fibers pu, <<1, although it can
become ~1 for semiconductor-doped glasses or other
high-n, materials [12]. As an example, u, was estimated
to be about 0.01 in lead-silicate fibers [14] and may ap-
proach 0.1 for As,S; glasses [15].

To study pulse amplification, Eq. (2) is solved numeri-
cally by using a split-step algorithm [14]. The input am-
plitude u (0, 7)=sechr corresponds to that of a fundamen-
tal soliton. Figure 1 shows the energy gain and the full
width at half maximum (FWHM) 7gwym of the central
peak as a function of the propagation distance £ for an
amplifier with 10-dB gain per dispersion length (#=2.3)
and T,/T,=0.2(d=0.092) for u, in the range 0-0.2.
As one would expect the energy gain is reduced consider-
ably in the presence of TPA. The pulse width 7wy de-
creases as the pulse is amplified, a feature that can be
used to simultaneously amplify and compress picosecond
optical pulses. The compression factor is reduced in the
presence of TPA. Figure 2 compares the pulse shapes at
£=1 after the optical pulse has propagated over one
dispersion length. Even for u,=0.1 the peak power is re-
duced by a factor of 3 and the compression is reduced by
a factor of 2 because of TPA.

Figure 1 shows that Tgwy begins to increase dramati-
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FIG. 1. Energy gain and the FWHM of the input pulse as a
function of the amplifier length when a fundamental soliton is
amplified in a fiber with 10-dB gain per dispersion length. Solid,
dotted, and dashed curves correspond to u,=0, 0.1, and 0.2, re-
spectively, where u, is related to the TPA coefficient.

cally after £> 1.2, a feature that is absent when u,=0.
This behavior can be understood from Fig. 3 where pulse
evolution over the range £=0-2 is shown for p,=0.1.
The amplified pulse splits into two pulses beyond £>1.2
such that a minimum occurs at 7=0. Both subpulses are
amplified until they reach a maximum amplitude near
£=1.8. Further propagation leads to generation of addi-
tional subpulses. Pulse splitting is also observed for
u,=0 [6,8], but the presence of TPA absorption makes
pulse splitting occur at shorter distances. Another
difference induced by TPA is that whereas the central
peak remains intact in the absence of TPA [8], it can
disappear in the presence of TPA as seen in Fig. 3 for
£=1.8.

To understand the effects of TPA in a more analytic
manner, one should consider whether Eq. (2) permits
solitary-wave solutions. In the absence of TPA (u,=0),
Eq. (2) is known to have a solitary-wave solution of the
form [2]

u(§,7)=N sech(pt)exp{ig In[cosh(p7)]+iTE} , (5)
where the parameters N, p, g, and I" depend on u and d.
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FIG. 2. Comparison of pulse shapers at £=1 for u,=0, 0.1,
and 0.2. Other parameters are the same as in Fig. 1.
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FIG. 3. Evolution of amplified pulse over two dispersion
lengths when p1,=0.1. Other parameters are the same as in Fig.
1.

The use of perturbation theory shows that Eq. (2) has an
approximate solution given by [15] (valid only for 3, <0
ors=-—1)

u(&,7)=2nsech(2nr)exp[4in*E— 2in(2d +u,)7] 6)

with 7=2u(d +2u,)” ! even in the presence of TPA pro-
vided u, d, and pu, are <<1.

In the case of fiber amplifiers u can be larger than 1
(u=2.3 in Figs. 1-3), and the perturbative solution (6) is
not valid. It turns out that a solitary-wave solution of
Eq. (2) exists for arbitrary values of u, d, and u, and for
both positive and negative values of 3,. In fact, the solu-
tion (5) is a solution of Eq. (2) when N, p, and T are given
by

N?*=1p2[s(g®’—2)—3¢d], (7a)
p’=—pld(1—¢*)—2sq]7", (7b)
'=—1p2[s(1—q*+2¢d], (7c)

and q is a solution of the quadratic equation
(d —pys /2)q*+3(s +yd /2)g + s —2d =0 . (7d)

The solitary-wave solution (5) represents a chirped soli-
ton. It exists for both normal and anomalous dispersions
(by choosing s =1 and — 1, respectively) as long as N and
p are real and positive. In the case of anomalous disper-
sion (s = —1) the solution (5) reduces to the exact solu-
tion of Ref. [17]. In the absence of TPA (u,=0) it
reduces to the solution given in Ref. [2]. It also reduces
to the perturbative solution (6) if u, ,, and d are assumed
to be small. Physically, N represents the soliton ampli-
tude, p ~! is related to the soliton width, g provides the
extent of frequency chirping, and I' is the propagation
constant.

Figure 4 shows dependence of the soliton amplitude N
and the soliton width p ~! on the TPA parameter u, for
the anomalous GVD case by choosing s = —1 in Egs. (7).
The parameter d =y if we use Ty =T, for the normaliza-
tion. The gain parameter u is related to the amplifier
gain G through G =exp(u). The effect of TPA is to de-
crease the soliton amplitude and increase the soliton
width. The same qualitative behavior persists even in the
case of normal GVD. Since the soliton widths obtained
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FIG. 4. Amplitude and width of chirped solitons as a func-
tion of the TPA parameter u, for amplifiers with 1-, 10-, and
20-dB gain per dispersion length. Soliton width is normalized
to the dipole relaxation time T',.

in Fig. 4 are comparable to T, one should reexamine the
question of validity of the soliton given by Eq. (5). Strict-
ly speaking, Eq. (1) does not remain valid for T\~ T,
since the coherent effects are expected to become impor-
tant [7]. The important point to note is that TPA is not
detrimental to the existence of chirped solitons in fiber
amplifiers. One can understand the amplification process
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seen in Fig. 3 in terms of these chirped solitons as fol-
lows. The input pulse experiences simultaneous
amplification and compression during the early stages of
the amplification process and evolves toward the chirped
soliton given by Eq. (5). The numerical results verify the
existence of frequency chirp. Since the soliton amplitude
is fixed by the parameter N for a given set of amplifier pa-
rameters, further amplification leads to the generation of
multiple solitons whose number keeps on increasing with
the propagation distance. Malomed has shown [18] that
the frequency chirp provides an attractive force that
helps to bind multiple chirped solitons.

In conclusion, this paper has studied the effects of TPA
on the pulse amplification in fiber amplifiers. An input
pulse can be simultaneously amplified and compressed al-
though the compression factor is smaller in the presence
of TPA. The amplified pulse evolves toward a chirped
soliton that is the solitary-wave solution of the general-
ized nonlinear Schrodinger equation. The pulse can split
into several chirped solitons whose number depends on
the gain and the length of the fiber amplifier.
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